Gregr et al., Cascading social-ecological costs and benefits

Gregr, E.J., V. Christensen, L. Nichol, R.G. Martone, R.W. Markel, J.C. Watson, C.D.G. Harley, E.A. Pakhomov, J.B. Shurin and K.M.A. Chan (2020). “Cascading social-ecological costs and benefits triggered by a recovering keystone predator.” Science 368(6496): 1243-1247. Doi: 10.1126/science.aay5342

Predator recovery often leads to ecosystem change that can trigger conflicts with more recently established human activities. In the eastern North Pacific, recovering sea otters are transforming coastal systems by reducing populations of benthic invertebrates and releasing kelp forests from grazing pressure. These changes threaten established shellfish fisheries and modify a variety of other ecosystem services. The diverse social and economic consequences of this trophic cascade are unknown, particularly across large regions. We developed and applied a trophic model to predict these impacts on four ecosystem services. Results suggest that sea otter presence yields 37% more total ecosystem biomass annually, increasing the value of finfish [+9.4 million Canadian dollars (CA$)], carbon sequestration (+2.2 million CA$), and ecotourism (+42.0 million CA$). To the extent that these benefits are realized, they will exceed the annual loss to invertebrate fisheries (−$7.3 million CA$). Recovery of keystone predators thus not only restores ecosystems but can also affect a range of social, economic, and ecological benefits for associated communities.